f08 — Least-squares and Eigenvalue Problems (LAPACK) f08atc

NAG C Library Function Document

nag zungqr (f08atc)

1 Purpose

nag_zungqr (f08atc) generates all or part of the complex unitary matrix) from a QR factorization
computed by nag_ zgeqrf (f08asc) or nag zgeqpf (f08bsc).

2 Specification

void nag_zungqr (Nag_OrderType order, Integer m, Integer n, Integer k, Complex a[],
Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zungqr (f08atc) is intended to be used after a call to nag zgeqrf (f08asc) or nag_zgeqpf (f08bsc),
which perform a QR factorization of a complex matrix A. The unitary matrix) is represented as a
product of elementary reflectors.

This function may be used to generate () explicitly as a square matrix, or to form only its leading columns.

Usually @ is determined from the QR factorization of an m by p matrix A with m > p. The whole of @
may be computed by:

nag_zungqr (order,m,m,p,&a,pda,tau,&fail)
(note that the array a must have at least m columns) or its leading p columns by:
nag_zungqr (order,m,p,p,&a,pda,tau,&fail)

The columns of @) returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus nag_zgeqrf (f08asc) followed by nag_zungqr (f08atc) can be used to orthogonalise the
columns of A.

The information returned by the QR factorization functions also yields the QR factorization of the leading
k columns of A, where k < p. The unitary matrix arising from this factorization can be computed by:

nag_zungqr (order,m,m,k,&a,pda,tau,&fail)
or its leading k columns by:

nag_zungqr (order,m,k,k,&a,pda,tau,&fail)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f08atc.1

f08atc NAG C Library Manual

2: m — Integer Input
On entry: m, the order of the unitary matrix Q).

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of matrix @) that are required.

Constraint: m > n > 0.

4: k — Integer Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: n > k > 0.

5: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag_ zgeqrf
(f08asc) or nag_zgeqpf (f08bsc).

On exit: the m by n matrix Q).

6: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
7: tau[dim] — const Complex Input
Note: the dimension, dim, of the array tau must be at least max(1, k).
On entry: further details of the elementary reflectors, as returned by nag zgeqrf (f08asc) or
nag_zgeqpf (f08bsc).
8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, m = (value), n = (value).
Constraint: m > n > 0.

f08atc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08atc

On entry, n = (value), k = (value).
Constraint: n > k > 0.

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix @) differs from an exactly unitary matrix by a matrix F such that
1], = O(e),

where € is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 16mnk — 8(m + n)k2 —l—%k}; when
n = k, the number is approximately §n2(3m —n).

The real analogue of this function is nag_dorgqr (f08afc).

9 Example

To form the leading 4 columns of the unitary matrix () from the Q)R factorization of the matrix A, where

0.96 —0.812 —0.03+0.96: —0.91+2.060 —0.0540.41z:
—098+198 —120+0.19¢ —0.66+0.42: —0.81 4 0.562
0.62 — 0.46¢ 1.01 +0.02¢ 0.63 —-0.17¢ —1.11+ 0.607
—0.3740.38¢ 0.19 —0.54¢ —0.98 —0.36¢ 0.22 —0.20¢
0.83 +0.51¢ 0.2040.01z —0.17 — 0.46¢ 1.47 +1.59¢
1.08 — 0.28¢ 0.20 - 0.12¢ —0.07 +1.23¢ 0.26 + 0.26¢

A=

The columns of () form an orthonormal basis for the space spanned by the columns of A.

9.1 Program Text

/* nag_zungqgr (f08atc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

[NP3645/7] f08atc.3

f08atc

int main(void)

{

/* Scalars */

Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;

NagError fail;

Nag_OrderType order;

/* Arrays */

char *title=0;

Complex *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08atc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*x["\n] ");

Vscanf ("$1d%1d%*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

tau_len = MIN(m,n);

/* Allocate memory */
if (!(title = NAG_ALLOC(31, char)) ||
!(a = NAG_ALLOC(m * n, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; i <= m; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,]j).re, &A(i,])
}
Vscanf ("$*[*\n] ");

/* Compute the QR factorization of A */
fO8asc(order, m, n, a, pda, tau, &fail);

.im) ;

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Form the leading N columns of Q explicitly =*/
fO8atc(order, m, n, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8atc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the leading N columns of Q only */

f08atc.4

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vsprintf (title,

Nag_BracketForm,

"$7.4f",

Nag_IntegerLabels, 0, 80,

if (fail.code

{

!= NE_NOERROR)

title,

Vprintf ("Error from x04dbc.\n%s\n",
exit_status = 1;
goto END;

}
END:

if (title) NAG_FREE(title);
if (a) NAG_FREE (a);

if (tau) NAG_FREE(tau) ;

return exit_status;

}

9.2 Program Data

fO08atc Example Program Data

6 4

.96,-0.81
.98, 1.98
.62,-0.46
.37, 0.38
.83, 0.51
.08,-0.28

P OOOOOo

~ e~~~ o~~~

9.3 Program Results

cNeoNeN N e
=
e}
~
|
o

fO8atc Example Program Results

The leading 4 columns of Q

0.

0.

1 (-0.3110,
2 (0.3175,-0.
3 (-0.2008,
4 (0.1199,-0.
5 (-0.2689,-0.
6 (-0.3499,

0.

1
2624)
6414)
1490)
1231)
1652)
0907)

A~~~ o~~~

[eNoNoNoNoNe)

.3175, 0.
.2062, O.
.4892,-0.
.2566,-0.
.1697,-0.
.0491,-0.

0)
0.)
0.63,-0.17)
0)
0)
0)

.98,-0.36
.17,-0.46
.07, 1.23

4835
1577
0900
3055
2491
3133

NN NG N

"The leading %21d columns of Q\n", n);
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

Nag_IntegerLabels, O,
0, 0, &fail);

fail.message) ;

~ e~~~ o~~~

A~~~ o~~~

[cNoNoNoNoNe)

.4966,-0.
.0793,-0.
.0357,-0.
.4489,-0.
.0496, 0.
.1256,-0.

ORr ORr OO

.05,
.81,

.22,-
.47,
.26,

2997
3094
0219
2141
1158
5300

—_——— — — — W

a, pda,

f08atc

:Values of M and N

:End of matrix A

.0072,
.0282,
.5625,
.1651,
.4885,
.1039,

4
-0.3718)
-0.1491)
-0.0710)

0.1800)
-0.4540)

0.0450)

[NP3645/7]

f08atc.5 (last)

	f08atc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

